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Chronic alcohol consumption produces painful peripheral neuropathy for which there is no reliable successful therapy, mainly due to
lack of understanding of its pathobiology. Alcoholic neuropathy involves coasting caused by damage to nerves that results from long
term excessive drinking of alcohol and is characterized by spontaneous burning pain, hyperalgesia and allodynia. The mechanism
behind alcoholic neuropathy is not well understood, but several explanations have been proposed. These include activation of spinal
cord microglia after chronic alcohol consumption, oxidative stress leading to free radical damage to nerves, activation of mGlu5
receptors in the spinal cord and activation of the sympathoadrenal and hypothalamo-pituitary-adrenal (HPA) axis. Nutritional deficiency
(especially thiamine deficiency) and/or the direct toxic effect of alcohol or both have also been implicated in alcohol-induced
neuropathic pain. Treatment is directed towards halting further damage to the peripheral nerves and restoring their normal
functioning. This can be achieved by alcohol abstinence and a nutritionally balanced diet supplemented by all B vitamins. However, in
the setting of ongoing alcohol use, vitamin supplementation alone has not been convincingly shown to be sufficient for improvement
in most patients. The present review is focused around the multiple pathways involved in the development of peripheral neuropathy
associated with chronic alcohol intake and the different therapeutic agents which may find a place in the therapeutic armamentarium
for both prevention and management of alcoholic neuropathy.

Introduction

Alcohol is one of the most commonly used substances in
the world. After ingestion, alcohol distributes throughout
body tissues and rapidly crosses the blood-brain barrier. It
is not surprising that ethanol abuse significantly contrib-
utes to damage in a variety of tissues including liver, the
central and peripheral nervous systems, and skeletal and
cardiac muscle. Alcoholic peripheral neuropathy is a
potentially incapacitating complication of long-term
excessive consumption of alcohol characterized by pain
and dysesthesias, primarily in the lower extremities, and is
poorly relieved by available therapies [1–3]. Alcohol-
related neuropathy is associated with several risk factors,
such as malnutrition, thiamine deficiency, direct toxicity of
alcohol and a family history of alcoholism [3–6], but it is not
clear which of these plays a primary role in inducing neu-
ropathy [7]. In the early stages of alcoholic neuropathy,
patients complain of pain in the extremities, which may be
severe and has been described as burning or ‘like tearing

flesh off the bones’ and is characterized by spontaneous
burning pain, hyperalgesia and allodynia [8].

Prevalence of alcoholic neuropathy

Using the criteria for alcoholism listed in the Diagnostic
and Statistical Manual of Mental Disorders, Fourth Edition
(DSM-IV), studies employing clinical and electro-
diagnostic criteria have estimated that in the United States
neuropathy is present in 25–66% of defined ‘chronic alco-
holics’. The factors most directly associated with the devel-
opment of alcoholic neuropathy include the duration and
amount of total lifetime alcohol consumption. Neuropathy
is more prevalent in frequent, heavy and continuous drink-
ers compared with more episodic drinkers [6]. Incidence of
alcoholic polyneuropathy was found to be higher in
women compared with men [9]. The findings were sup-
ported by the results from preclinical studies by Dina et al.
[10] who also found that alcohol induced neuropathy had
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a rapid onset and greater severity in female as compared
with male rats.

Clinical symptoms associated with
alcoholic peripheral neuropathy

Clinical features of alcoholic peripheral neuropathy
develop slowly, extending over a period of months and
include abnormalities in sensory, motor, autonomic and
gait functions. Painful sensations with or without burning
quality represent the initial and major symptom of alco-
holic neuropathy [2, 4]. Sometimes, these symptoms can
be very painful and incapacitating. Later on, weakness
appears in the extremities, involving mainly the distal
parts. Progressively, the sensory and motor symptoms and
signs extend proximally into the arms and legs and finally
the gait may become impaired [11]. Progression of symp-
toms is usually gradual, continuing over months or years
[2, 4]. Electrophysiologic and pathologic findings mainly
indicate axonal neuropathy with reduced nerve fibre den-
sities. Densities of small myelinated fibres and unmyeli-
nated fibres were more severely reduced than the density
of large myelinated fibres, except in patients with a long
history of neuropathic symptoms and marked axonal
sprouting [2].Subperineurial oedema is more prominent in
thiamine deficient neuropathy, whereas segmental
de/remyelination resulting from widening of consecutive
nodes of Ranvier is more frequent in alcoholic neuropathy
[3].

Pathophysiology: different
pathways involved

The pathogenesis of alcoholic neuropathy is still under
debate. It has previously been considered in relationship to
nutritional, especially thiamine, deficiencies seen in alco-
holics. Thiamine deficiency is closely related to chronic
alcoholism and can induce neuropathy in alcoholic
patients. Ethanol diminishes thiamine absorption in the
intestine, reduces hepatic stores of thiamine and affects
the phosphorylation of thiamine, which converts it to its
active form [12]. In addition, patients with chronic alcohol-
ism tend to consume smaller amounts of essential nutri-
ents and vitamins and/or exhibit impaired gastrointestinal
absorption of these nutrients secondary to the direct
effects of alcohol. These relationships make chronic alco-
holism a risk factor for thiamine deficiency. In addition to
thiamine deficiency, recent studies indicate a direct neuro-
toxic effect of ethanol or its metabolites. Axonal degenera-
tion has been documented in rats receiving ethanol while
maintaining normal thiamine status [5]. Human studies
have also suggested a direct toxic effect, since a dose-
dependent relationship has been observed between
severity of neuropathy and total life time dose of ethanol

[6, 13]. The exact mechanism behind alcoholic neuropathy
is not well understood, but several explanations have been
proposed.These include activation of spinal cord microglia
after chronic alcohol consumption [14], activation of
mGlu5 receptors in the spinal cord [15], oxidative stress
leading to free radical damage to nerves, release of pro-
inflammatory cytokines coupled with activation of protein
kinase C [16], involvement of extracellular signal-regulated
kinases (ERKs) or classical MAP kinases [10], involvement of
the opioidergic [14] and hypothalamo-pituitary-adrenal
system [17–19]. Some other studies have indicated that
chronic alcohol intake can decrease the nociceptive
threshold with increased oxidative-nitrosative stress and
release of pro-inflammatory cytokines coupled with acti-
vation of protein kinase C (Figure 1) [10,16].Therefore,alco-
holic neuropathy may occur by a combination of the direct
toxic effects of ethanol or its metabolites and nutritional
deficiencies, including thiamine deficiency. The precise
mechanisms responsible for toxicity on the peripheral
nervous system, however, have not yet been clarified. The
amount of ethanol which causes clinically evident periph-
eral neuropathy is also still unknown.

Nutritional factors responsible for
alcoholic neuropathy (indirect
toxicity)

Contribution of metabolic pathways
The primary axonal damage and secondary demyelination
of motor and sensory fibres (especially small diameter
fibres) are considered to constitute the morphologic basis
of alcoholic damage to nerve tissue at present [20]. The
demyelination is explained as the result of a slowing down
(decceleration) of axoplasmic flow and a degradation of
the quality of biological properties of axonal enzymes and
proteins. This type of degeneration, so called ‘dying-back’,
resembles Wallerian degeneration. Ethanol and its toxic
degradation metabolites affect neuronal metabolism
including the metabolic pathways of nucleus, lysosomes,
peroxisomes, endoplasmatic reticulum and cytoplasm
[21]. Alcohol enters the blood as early as 5 min after inges-
tion and its absorption peaks after 30–90 min.The key role
in the degradation of ethanol is played by ethanol dehy-
drogenase and acetaldehyde dehydrogenase-two step
enzymatic systems by which ethanol is converted to
acetate which is further metabolized in humans. Acetalde-
hyde dehydrogenase is a mitochondrial enzyme which
undergoes a single amino acid substitution (mutation) in
about 50% of the Asian population in a way similar to the
genetic changes in sickle cell anaemia [21]. Thus, in alco-
holics with the mutated dehydrogenase enzyme, acetalde-
hyde concentrations may reach values about 20 times
higher than in individuals without the mutation. A certain
amount of acetaldehyde is not metabolized by the usual
pathways (Figure 2) and binds irreversibly to proteins
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which results in the creation of cytotoxic proteins which
adversely affect the function of nervous system cells.These
abnormal proteins influence other cell populations espe-
cially the hepatocytes where the damage to hepatic mito-
chondria results in hepatic cirrhosis with reduction of
energetic substrates in the liver.The action of these abnor-
mal proteins is explained by competition with normal pro-
teins causing the damage to function and metabolism of
the cell [22].

One of the other important issues in alcoholic indi-
viduals is the source of their calorie intake. These indi-
viduals draw the majority of calories from calorie rich
alcoholic beverages with low nutritive value. Chronic
abuse of alcohol depletes the pool of liver proteins which
are consumed for energy production and insufficient
intake of proteins only worsens this imbalance. Resulting
disturbances in protein and lipid metabolism lead to
undernourishment which adversely influences other
metabolic pathways, including those influencing the
function of the nervous system. While the central nervous
system has its own barrier systems (blood-brain barrier),
which may defy the metabolic and toxic influences and
their effect on brain functions for a significant period of
time, the peripheral nervous system lacks this protective
barrier which can contribute to the fact that peripheral
nervous system disorders are present in 12–30% of
alcohol abusers [23].

Chronic alcohol intake

Acetaldehyde

Neuropathic pain

PKC, MEK/ERK
SignalingNFκβ, Caspase3

Neuronal damage
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IL–1β, IL–6, TGF–β1)
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Figure 1
A schematic diagram of different pathways involved in the pathophysiology of alcoholic neuropathy
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Diagram depicting metabolism of ethanol and its metabolite. CoA
coenzyme A,TCA tricarboxylic acid cycle,Vit B6 vitamin B6,Vit B12 vitamin
B12
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Relationship between alcoholic neuropathy and
thiamine deficient neuropathy
There is both clinical and experimental evidence of a
direct neurotoxic effect of ethanol, while some have
argued that it results from a nutritional deficiency, espe-
cially thiamine deficiency. The relationships between alco-
holic neuropathy and commonly associated nutritional
deficiencies, especially thiamine deficiency have been dis-
cussed in terms of the apparent clinical and pathologic
presentations [24, 25]. Koike et al. [26] compared the clini-
copathologic features of thiamine-deficiency neuropathy
caused by a dietary imbalance with those caused by gas-
trectomy, including strict biochemical determination of
thiamine status. Although clinical manifestations varied
widely between patients with either type of thiamine
deficiency neuropathy, overall clinicopathologic features,
including the spectrum of clinical variability, did not differ
significantly by cause. Thus, clinicopathologic features of
post gastrectomy polyneuropathy with thiamine defi-
ciency are identical to those of beriberi neuropathy, and
the results further confirmed that thiamine deficiency can
be a major cause of postgastrectomy polyneuropathy
[27]. In another clinical study by Koike et al. [28] the cause
of the thiamine deficiency was found to be associated
with gastrectomy to treat cancer in a 46-year-old man and
with dietary imbalance in a 33-year-old man. In both
patients, the upper and lower extremities showed a
rapidly progressive weakness over the course of 1 month.
Muscle weakness in the first patient progressed even after
admission to hospital and urinary retention, Wernicke’s
encephalopathy, lactic acidosis, paralytic ileus and heart
failure appeared subsequently. Clinical symptoms in both
patients showed improvement after initiation of thiamine
administration, although some residual deficit remained.
Clinically, sensory disturbance and weakness, especially in
the distal part of the lower extremities, are common fea-
tures of both alcoholic and thiamine deficiency neuro-
pathies [24, 29]. Electrophysiologic and histopathologic
findings of axonal neuropathy have also been considered
as common features [2, 5, 29, 30]. These similarities have
led to a belief that these two neuropathies are identical,
and that polyneuropathy associated with chronic alcohol-
ism most likely is caused by thiamine deficiency [24, 25].
Thus, the concept of alcoholic neuropathy encompasses
both direct neurotoxicity of ethanol or its metabolites and
the concomitant effects of nutritional status, especially
thiamine deficiency.

In one clinical study, aimed at studying distinct clinico-
pathologic features of alcoholic neuropathy, 64 patients
were assessed. In 47 of these patients sural nerve biopsy
was performed, with discrimination in terms of their thia-
mine status [3].The ethanol consumption of these patients
was more than 100 g day–1 for more than 10 years. These
patients were divided into two groups based on thiamine
status. The subgroup without thiamine deficiency con-
sisted of 36 patients, while the subgroup with thiamine

deficiency consisted of 28 patients. In addition, 32 patients
with nonalcoholic thiamine deficiency neuropathy were
also evaluated for comparison.The subgroup without thia-
mine deficiency, considered to be a pure form of alcoholic
neuropathy, uniformly showed slowly progressive, sensory
dominant symptoms.Superficial sensation, especially noci-
ception, was predominantly impaired and painful symp-
toms were the primary complaint in most patients in this
group. In contrast, the neuropathic symptoms of nonalco-
holic thiamine deficiency neuropathy, considered to be
identical to beriberi neuropathy [26], were variable, but
typically were motor dominant and acutely progressive,
affecting both superficial and deep sensation. The histo-
logic features of sural nerve biopsy specimens demon-
strated small fibre predominant axonal loss as
characteristic of the pure form of alcoholic neuropathy.

Role of nutritional status other than thiamine
deficiency
Deficiency of vitamins other than thiamine may also con-
tribute to clinical features of alcoholic neuropathy. Chronic
alcoholism can alter the intake, absorption and utilization
of various nutrients (nicotinic acid, vitamin B2, vitamin B6,
vitamin B12, folate or vitamin E). Deficiencies of B vitamins
other than thiamine also may contribute to variation in
clinical features, but characteristic symptoms of multiple
vitamin deficiency were not seen in patients with thiamine
deficiency neuropathies due to gastrectomy and dietary
imbalance [26]. These clinical features include anorexia,
diarrhoea, erythematous and hyperkeratotic dermatitis,
and mental changes in pellagra (nicotinic acid deficiency),
cheilosis, glossitis, keratoconjunctivitis and dermatitis in
vitamin B2 deficiency and myelopathy in vitamin B12 and
folate deficiencies. Thus, these vitamin deficiencies were
not considered to be major causal factors of neuropathy
[26].

Behse & Buchthal [31] compared 37 Danish patients
with alcoholic neuropathy with six patients with nonalco-
holic post gastrectomy polyneuropathy.The authors noted
that Danish beer at the time of the study contained thia-
mine and vitamin B6. Thus, deficiency of these vitamins
was felt to be unlikely in Danish beer drinkers at that time
and, indeed, measured vitamin concentrations were
mostly normal. Clinical features of neuropathies in the
alcoholic and post gastrectomy patients were similar.
These two groups, however, were distinct from the stand-
point that nerve conduction velocities were slower and
sural nerve biopsy specimens revealed more segmental
demyelination in the post gastrectomy group.The authors
concluded that malnutrition, including low blood concen-
trations of B vitamins, is not a prerequisite for the develop-
ment of alcoholic neuropathy, and ethanol per se plays a
role in the pathogenesis of alcoholic neuropathy. Another
study by Zambelis et al. [32] also suggested the participa-
tion of the direct toxic effect of ethanol on the peripheral
nervous system in the pathogenesis of alcoholic neuropa-
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thy, although long standing hyperglycaemia and impaired
vitamin B12 utilization were also suggested to be involved.

Direct toxic effects of ethanol or
its metabolites (direct toxicity)

Role of acetaldehyde in alcoholic neuropathy
Ethanol can exert its harmful effects through its metabo-
lism. One possible mediator of the direct neurotoxic effect
of ethanol is acetaldehyde, a highly toxic metabolite of
ethanol with extraordinary reactivity. The mechanisms of
the toxicity for liver include production of acetaldehyde-
protein adduct formation, depletion of glutathione, micro-
tubular impairment, inhibition of DNA repair, impairment
of mitochondrial electron transport chain and stimulation
of immunologic reactivity. There is evidence that
acetaldehyde-protein adducts are present even in organs
that do not seem to produce acetaldehyde efficiently
themselves, due to lack of ADH expression [33]. In such
cases, acetaldehyde may be formed by induction of the
microsomal ethanol oxidizing system [34]. Alternatively,
acetaldehyde may reach those organs by blood flow. Given
these possibilities, the mechanisms by which acetaldehyde
has toxic effects on peripheral nerves may be similar to
those in the liver and other organs. Dose-dependent
increases in neuronal cell death were demonstrated by
incubation of neuronal cell cultures with acetaldehyde-
derived advanced glycation end-products (AA-AGE), and
the neurotoxicity of AA-AGE is attenuated by the addition
of an anti-AAAG-specific antibody [35]. These results
suggest that the neurotoxicity due to accumulation of
acetaldehyde may be associated with the pathogenesis of
alcoholic neuropathy.

Oxidative-nitrosative stress and alcoholic
neuropathy
Oxidative stress is known to play a very important role in
experimental animal models of neuropathic pain. Lee et al.
[36] suggested that reactive oxygen species are impor-
tantly involved in the development and maintenance of
capsaicin-induced pain, particularly in the process of
central sensitization in the spinal cord in rats. Padi et al.
[37], demonstrated that chronic administration of minocy-
cline when started early before peripheral nerve injury
could attenuate the development of neuropathic pain by
inhibiting pro-inflammatory cytokine release and oxida-
tive and nitrosative stress in mononeuropathic rats. Naik
et al. [38] suggested the involvement of oxidative stress in
experimentally induced chronic constriction injury of the
sciatic nerve model in rats. Endoneural oxidative stress
leads to nerve dysfunction in rats with chronic constriction
injury [39]. A significant decrease in the activity of anti-
oxidant enzymes (superoxide dismutase and catalase) and
an increase in lipid peroxidation were observed in sciatic
nerves of diabetic rats with established neuropathic pain

[40]. ROS triggers second messengers involved in central
sensitization of dorsal horn cells [41] or they activate spinal
glial cells which in turn play an important role in chronic
pain [42]. Reduced glutathione is a major low molecular
weight scavenger of free radicals in cytoplasm. Depletion
of glutathione increases the susceptibility of neurones to
oxidative stress and hyperalgesia [43, 44].

Nitric oxide is also implicated in neuropathic pain [45,
46]. It sensitizes spinal neurones and contributes to sensi-
tization of central neurones by disinhibition [47].Moreover,
unfettered production of nitric oxide coupled with defi-
cient superoxide dismutase leads to production of perox-
ynitrite, which is several times more potent than its parents
in terms of tissue toxicity. Ethanol is oxidized to acetalde-
hyde by cytochrome P450, which increases reactive
oxygen species, with concomitant changes in redox
balance [48, 49]. Rats given chronic ethanol show
enhanced production of oxidative markers, such as
thiobarbituric acid reactive substances, hydrogen peroxide
and OH- like species [50]. Studies have suggested that
chronic ethanol increases oxidative damage to proteins,
lipids and DNA [51, 52]. Bosch-Morell et al. [53] demon-
strated that chronic ethanol promotes oxidative stress in
rat peripheral nerve. The amount of malondialdehyde, a
lipid peroxidation product, increases in the sciatic nerves
of rats fed an ethanol-containing diet, when compared
with pair-fed animals. Moreover, glutathione content and
glutathione peroxidase activity in this same tissue
decrease in ethanol-fed vs. pair-fed rats, suggesting the
probable involvement of alcohol induced oxidative stress
in the pain like state associated with chronic alcohol
intake. Recently, we have also found a significant increase
in lipid peroxide concentrations and marked decrease in
reduced glutathione, superoxide dismutase and catalase
activity in the sciatic nerve of rats with hyperalgesia and
allodynia given alcohol (10 g kg-1 orally) for 10 weeks [54,
55]. Thus, following ethanol intoxication, the balance
between pro-oxidants and anti-oxidants is disturbed to
such an extent that it results in the oxidative damage of
biomolecules, such as fats, proteins or DNA, finally leading
to cell injury and thus alcoholic neuropathy.

Molecular mechanisms involved in
alcoholic neuropathy

Role of protein kinases in alcoholic neuropathy
Protein kinase C (PKC) is a family of protein kinases consist-
ing of approximately 10 isozymes. PKC is involved in recep-
tor desensitization, modulating membrane structure
events, regulating transcription, mediating immune
responses, regulating cell growth and in learning and
memory. These functions are achieved by PKC mediated
phosphorylation of other proteins [16]. Apart from above
function, over-activation of epsilon form of protein kinase
C (PKCe) is known to be involved in mediating neuropathic
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pain, such as pain induced by cancer chemotherapy (vinc-
ristine) [56] and diabetes [57]. PKC and protein kinase A
(PKA) are both known to be important in nociceptor func-
tion [57–59]. There are several studies suggesting the
involvement of protein kinases in alcoholic neuropathy.
Dina et al. [16] maintained rats on a diet to simulate chronic
alcohol consumption in humans and found mechanical
hyperalgesia by the fourth week which was maximal at 10
weeks. Thermal hyperalgesia and mechanical allodynia
were also present with decreased mechanical threshold of
C-fibres.The hyperalgesia was acutely attenuated by intra-
dermal injection of nonselective PKC or selective PKCe
inhibitors injected at the site of nociceptive testing.
Western immunoblot analysis indicated a higher level of
PKCe in dorsal root ganglia from alcohol-fed rats, support-
ing a role for enhanced PKCe second messenger signalling
in nociceptors contributing to alcohol-induced hyperalge-
sia [16]. Miyoshi et al. [15] found that a significant decrease
in the mechanical nociceptive threshold was observed after
5 weeks of chronic ethanol consumption in rats.This hype-
ralgesia was significantly attenuated by repeated i.p. injec-
tion of (S)-2,6-diamino-N-[[1-(oxotridecyl)-2-piperidinyl]
methyl] hexanamide dihydrochloride (NPC15437), a selec-
tive PKC inhibitor, once a day for a week after 4 weeks of
ethanol treatment. Moreover, phosphorylated PKC was sig-
nificantly increased in the spinal cord following chronic
ethanol consumption. These findings constitute direct
evidence that spinal PKC plays a substantial role in the
development and maintenance of an ethanol-dependent
neuropathic pain-like state in rats.

PKA and PKCe signalling is also known to play a highly
sexually dimorphic role in alcoholic neuropathy [10]. In
gonad-intact female rats, Walsh inhibitor peptide
(WIPTIDE), both a PKCe inhibitor as well as a PKA inhibitor,
injected intradermally at the site of nociceptive testing
after establishing alcohol induced hyperalgesia, signifi-
cantly inhibited hyperalgesia. Following ovariectomy,
alcohol failed to induce hyperalgesia in female rats while
oestrogen replacement reinstated alcoholic neuropathy in
the female rats.The PKA inhibitor,WIPTIDE, also attenuated
alcohol-induced hyperalgesia in oestrogen-replaced
female rats. In addition, the magnitude of analgesia
induced by a PKCe inhibitor was greater in female as com-
pared with male rats. However, in male rats, a PKCe inhibi-
tor, but not a PKA inhibitor, attenuated alcohol-induced
hyperalgesia [10]. The mechanism underlying the sexually
dimorphic contribution of PKA and PKCe to pain associ-
ated with alcohol-induced neuropathy remains to be
determined.

A connection between MEK/ERK signaling and
alcoholic neuropathy
Extracellular signal-regulated kinases (ERKs) or classical
mitogen activated protein (MAP) kinases (also known as
MEK) are widely expressed protein kinase intracellular sig-
nalling molecules which are involved in functions includ-

ing the regulation of meiosis, mitosis and post mitotic
functions in differentiated cells. Many different stimuli,
including growth factors, cytokines, viral infection, ligands
for heterotrimeric G protein-coupled receptors, transform-
ing agents, and carcinogens, activate the ERK pathway.
There are many studies suggesting the role of MEK/ERK
signaling in inflammatory pain in male [60–63] and female
rats [64]. Dina et al. [10] evaluated the contribution of MEK/
ERK to alcohol-induced peripheral neuropathy and found
that intradermal injection of PD98059 (1 mg ml-1), a selec-
tive inhibitor of mitogen and ERK kinase and U0126
(1 mg ml-1),a specific inhibitor of ERK1/2,after establishing a
state of hyperalgesia in alcohol-fed rats of either gender,
attenuated ethanol induced hyperalgesia similarly in male
and female rats,consistent with a comparable role for MEK/
ERK signaling in chronic alcohol-induced hyperalgesia in
rats of both genders.

Role of spinal cord microglia
Spinal cord glial cells are implicated in the exaggerated
pain state created by diverse manipulations such as sub-
cutaneous inflammation, neuropathy and spinal immune
activation [65, 66]. It has been recognized that spinal cord
glial cells, astrocytes and microglia are activated by neuro-
pathic pain or peripheral inflammation [42]. Furthermore,
astrocytes and microglia are activated by such pain rel-
evant substances as substance P, calcitonin-gene related
peptide (CGRP), ATP and excitatory amino acids from
primary afferent terminals, in addition to viruses and bac-
teria [67, 68]. In a study by Narita et al. [14], 5 weeks ethanol
treatment resulted in significantly decreased mechanical
nociceptive threshold along with microglia activation in
the spinal cord of rats, implicating a role for proliferated
and activated microglia in the expression of a neuropathic
pain-like state following chronic ethanol consumption.

Role of caspases in alcoholic neuropathy
Caspases, or cysteine-aspartic acid proteases, are a family
of cysteine proteases, which play an essential role in apo-
ptosis (programmed cell death), necrosis and inflamma-
tion. Translocation of NFkb to the nucleus has been
reported to result in activation of the endogenous pro-
teolytic enzyme system caspases [69]. Consequently, the
cascade events promote further apoptosis [70]. Joseph &
Levine [71] suggested that activity in signaling pathways
that ultimately lead to apoptosis plays a critical role in the
generation of neuropathic pain, before death of sensory
neurones becomes apparent. Activator and effector
caspases, defining components of programmed cell death
signalling pathways, also contribute to pain-related behav-
iour in animals with small fibre peripheral neuropathies.
The death receptor ligand, tumour necrosis factor a, and its
downstream second messenger, ceramide, also produce
pain-related behaviour via this mechanism. In two models
of painful peripheral neuropathy, HIV/AIDS therapy
(induced by the nucleoside reverse transcriptase inhibitor,
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dideoxycytidine) and cancer chemotherapy (induced by
vincristine) peripheral neuropathy, and for pain-related
behaviour induced by tumour necrosis factor a and its
second messenger, ceramide, inhibition of both activator
(1, 2, 8 and 9) and effector (3) caspases attenuates neuro-
pathic pain-related behaviour. This suggests that these
pathways are potential targets for novel pharmacological
agents for the treatment of inflammatory as well as neuro-
pathic pain [71].

Chronic exposure to ethanol results in increased
amounts of oxidative damage; translocation of PKC, activa-
tion of PKC and NFkb, which results in DNA fragmentation
and ultimately increased neuronal death through apopto-
sis or other mechanisms that are responsible for the
behavioural deficits [72]. Izumi et al. [73] also demon-
strated that a single day of ethanol exposure in rats on post
natal day 7 results in significant apoptotic neuronal
damage throughout the forebrain after 24 h of ethanol
administration. Thus, it is quite possible that chronic
alcohol consumption is responsible for inducing neuropa-
thy by activation of the caspase cascade and may be
an important target for the treatment of alcoholic
neuropathy.

Involvement of glutamate receptors
Accumulating evidence suggests a pivotal role for
metabotropic glutamate receptors (mGluRs) in nocicep-
tive processing, inflammatory pain and hyperalgesia [74,
75]. Several mGluR subtypes have been identified in the
superficial dorsal horn of the spinal cord [76, 77] and on
primary afferent fibres [78]. Glutamate concentrations are
elevated in the superficial dorsal horn of rats after chronic
ligature of the sciatic nerve [79]. Miyoshi et al. found that 5
weeks after ethanol treatment, the mechanical nociceptive
threshold was significantly decreased and is further
reduced up to 10 weeks [80]. As supported by immun-
ostaining, the membrane fraction showed that spinal
mGluR5 concentrations in ethanol-treated rats were sig-
nificantly increased compared with those in the control
diet group. These findings support the idea that the
increased number of membrane-bound mGluR5 following
chronic ethanol consumption may lead to a long lasting
activation of neuronal protein kinase C in the dorsal horn
of the spinal cord. This phenomenon may be responsible
for the induction of the neuropathic pain like behaviour
following chronic ethanol consumption. Not only mGluRs
but ionotropic glutamate (NMDA) receptors are also
involved in alcoholic-induced neuropathic pain. Narita
et al. [14] found that the p- Ser1303-NR2B subunit protein
(subunit of NMDA receptor) in the spinal cord of rats was
significantly increased following chronic ethanol treat-
ment suggesting that PKC-dependent NR2BRs in the spinal
cord may be activated following chronic ethanol con-
sumption and may be involved in the induction of the
ethanol dependent neuropathic pain-like state.

Involvement of the opioidergic system
Narita et al. [14] found that chronic alcohol consumption
was associated with long lasting hyperalgesia during and
even after ethanol withdrawal along with opioid receptor
dysfunctioning specific for m opioid receptors (MOR), but
not delta and kappa opioid receptors. These findings
suggest that chronic ethanol treatment causes the spe-
cific dysfunction of MOR. Thus, up-regulation of cPKC
activity may, at least in part, be involved in MOR dysfunc-
tion (may be an increase in MOR phosphorylation) follow-
ing chronic ethanol treatment. This phenomenon may
explain the reduced sensitivity to morphine-induced anti-
nociception under the ethanol-dependent neuropathic
pain-like state.

Involvement of the sympatho-adrenal and
hypothalamo-pituitary-adrenal (HPA) axis in
alcoholic peripheral neuropathy
Alcohol consumption potently activates the two major
neuroendocrine stress axes, leading to the sustained
release of glucocorticoids and catecholamines [17–19].
Increased activity in the sympathetic nervous system has
been implicated in some forms of neuropathic pain [81, 82]
and glucocorticoids have been reported to exacerbate
pain in some animal models of peripheral neuropathy [83].
Dina et al. demonstrated the involvement of the
sympatho-adrenal stress axis and its final common media-
tor, epinephrine, in painful alcoholic neuropathy by
showing that adrenal medullectomy prevented and
reversed the pro-nociceptive effects of alcohol consump-
tion [84]. Moreover, they found that the hyperalgesic
phenotype in rats which had undergone adrenal medul-
lectomy by administering stress levels of epinephrine was
reconstituted. The critical contribution of stress hormones
to the pain associated with alcohol-induced peripheral
neuropathy, combined with the demonstration of stress-
induced hyperalgesia, dependent on neuroendocrine
stress axes [85, 86], suggests that the mechanisms
described in the study of Dina et al. may have implications
for other types of pain in which patients experience
repeated exposure to stress [84].

Thus, from the above discussion it is clear that stress
hormones, catecholamines and glucocorticoids, from the
sympatho-adrenal and HPA neuroendocrine stress axes,
respectively, play a very important role in initation and
maintenance of alcoholic neuropathy. The combined
actions of catecholamines and glucocorticoids, via their
receptors on sensory neurones, demonstrate a novel
mechanism by which painful alcoholic neuropathy is
induced and maintained.

Effects on axonal transport and cytoskeletal
properties
Axonal transport and cytoskeletal properties are impaired
by ethanol exposure [4]. Since alcoholic neuropathy
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manifests with length-dependent axonal degeneration,
the axonal transport system, which supplies essential pro-
teins and other cellular components, may be the primary
site exhibiting vulnerability to the toxicity of ethanol. Yer-
delen et al. suggest that alcoholic neuropathy is a primary
axonal neuropathy characterized by Wallerian degenera-
tion of the axons and a reduction in the myelination of
neural fibres [87]. An in vitro study of axonal transport
using dorsal root ganglion-sciatic nerve preparations from
the rat showed that transport was reduced following long
term ethanol feeding [88]. In vivo studies using rats have
demonstrated impairment of retrograde axonal transport
[89, 90]. Ethanol exposure reduces neurofilament protein
concentrations in primary cultured hippocampal neurones
[91]. Studies using the rat spinal cord indicate that chronic
ethanol exposure causes a reduction in neurofilament-
associated phosphatase activity and an increase in phos-
phate content of neurofilament proteins [92]. An in vitro
study using rat brain has demonstrated that phosphoryla-
tion of microtubule-associated proteins, which modulate
the functional properties of microtubules, is altered by
ethanol exposure [93]. A study using hepatoma-derived
cells has shown altered integrity of proteins associated
with microtubules following ethanol exposure [94].Altered
expression of neuronal protein 22, which interacts with
microfilament and microtubule matrices, may also be
involved in the pathogenesis of alcoholic neuropathy [95].
Thus, defects in axonal transport and cytoskeletal proper-
ties of axons may be one of the important pathways
involved in alcohol induced peripheral neuropathy.

Thus, it is clear that all the above pathways are potential
targets for novel pharmacological agents for the treatment
of alcoholic neuropathy.

Clinical management of alcoholic
neuropathy

Treatment is directed towards halting further damage to
the peripheral nerves and returning to normal functioning.
This can be achieved by alcohol abstinence, a nutritionally
balanced diet supplemented by all B vitamins, and reha-
bilitation. However, in the setting of ongoing ethanol use,
vitamin supplementation alone has not been convincingly
shown to be sufficient for improvement in most patients.
Painful dysesthesias associated with alcoholic neuropathy
can be treated using gabapentin or amitriptyline with
other over the counter pain medications, such as aspirin or
acetaminophen. However these drugs are being used only
for the management of acute pain and are ineffective in
targeting the basic pathological pathways involved in
alcoholic neuropathy.

Here we discuss a few of the therapeutic options which
are tried and could be tried for prevention and treatment
of alcoholic peripheral neuropathy.

Benfotiamine for the treatment of alcohol
related peripheral neuropathy
Benfotiamine (S-benzoylthiamine O-monophoshate) is a
synthetic S-acyl derivative of thiamine (vitamin B1). A
deficiency of vitamin B1 in chronic alcoholics can be due
to inadequate dietary intake, reduced capacity for hepatic
storage, inhibition of intestinal transport and absorption
or decreased formation of the active coenzyme form. In
an animal study, it has been found that chronic alcohol
consumption in rats resulted in a significant depletion in
thiamine diphosphate (TDP), the active coenzyme form of
thiamine. Supplementation with benfotiamine signifi-
cantly increased concentrations of TDP and total thiamine
compared with supplementation with thiamine HCl [96].
An 8 week, randomized, multicentre, placebo-controlled,
double-blind study compared the effect of benfotiamine
alone with a benfotiamine complex (Milgamma-N) or
placebo in 84 alcoholic patients. Parameters measured
included vibration perception in the great toe, ankle and
tibia, neural pain intensity, motor function and paralysis,
sensory function and overall neuropathy score and clini-
cal assessment. Although benfotiamine therapy was
superior to Milgamma-N or placebo for all parameters,
results reached statistical significance only for motor
function, paralysis and overall neuropathy score. The
reason for better results in the benfotiamine alone group
than in the Milgamma-N group, despite the fact that the
benfotiamine dosage was equivalent, is not completely
understood. The authors hypothesized that vitamins B6
and B12 might have competed with the effects of vitamin
B1 in the Milgamma-N group [97]. In another small
Russian study, 14 chronic alcoholic men with polyneur-
opathy were given 450 mg benfotiamine daily for 2
weeks, followed by 300 mg daily for an additional 4
weeks. During the treatment the regression of neuropa-
thy symptoms, other sensor and movement disorders
were observed. The evidence of positive dynamics at
peripheral and segmental nerve system level was sup-
ported by neurophysiological data. Benfotiamine was
found to be beneficial in patients with alcoholic poly-
neuropathy [98].

Alpha-lipoic acid
Alpha-lipoic acid, the most well-researched nutrient for
peripheral neuropathy, has been used as a treatment for
peripheral neuropathy in Europe for decades. Several
studies examining the mechanism of alpha-lipoic acid
have been conducted on streptozotocin-diabetic rats with
neuropathy. Alpha-lipoic acid was found to increase
glucose uptake by nerve cells [99], nerve myo-inositol
[99, 100], glutathione concentrations [100, 101], (Na+/K+)-
ATPase activity, nerve blood flow and normalize
NAD : NADH ratios [100].

Thus, alpha-lipoic acid may have a potential in the
treatment of patients with alcoholic neuropathy.
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Acetyl-L-carnitine
Acetyl-L-carnitine has been tested in clinical [102] and
animal studies [103] for the treatment of chemotherapy-
induced peripheral neuropathy. The decreases in nerve
conduction velocity were significantly less in groups
supplemented with acetyl-L-carnitine. In addition, acetyl-
L-carnitine did not interfere with the antitumour effects of
the drugs.

Thus, there is a need to screen acetyl-L-carnitine in both
preclinical and clinical models of alcoholic neuropathy.

Vitamin E
Vitamin E is used to refer to a group of fat-soluble com-
pounds that include both tocopherols and tocotrienols.
Treatment with vitamin E was found to be beneficial in the
treatment of patients with diabetic peripheral neuropathy
[104] and neuropathic pain in streptozotocin-induced dia-
betic rats [105]. Recently findings from our laboratory also
suggest the benefecial effects of both a-tocopherol and
tocotrienol, isoforms of vitamin E, in the prevention of
hyperalgesia and allodynia in rats administered ethanol for
10 weeks [55]. We found more potent effects with tocot-
rienol as compared with a-tocopherol [55].

Thus, there is an urgent need to screen the vitamin E
isoforms, especially tocotrienol for evaluating clinical effi-
cacy in patients with alcoholic neuropathy.

Methylcobalamin for the treatment of
peripheral neuropathy
Vitamin B12 deficiency has been associated with signifi-
cant neurological pathology, including peripheral neur-
opathy. Testing serum metabolites such as methylmalonic
acid and homocysteine can help identify clinically indi-
viduals at risk for a deficiency-associated neurological
syndrome [106]. One of the mechanisms believed to be at
play in vitamin B12 deficiency neuropathy is hypomethy-
lation in the central nervous system. Inhibition of the
B12- dependent enzyme methionine synthase results in
a fall in the ratio of S-adenosylmethionine (SAM) to S-
adenosylhomocysteine [107] and the resultant deficiency
in SAM impairs methylation reactions in the myelin
sheath. Clinical trials of methylcobalamin alone or vitamin
B12 combined with other B vitamins found overall symp-
tomatic relief of neuropathy symptoms was more pro-
nounced than electrophysiological findings [108]. Hence,
future studies are required to test the efficacy of methyl-
cobalamin in both the preclinical and clinical domain.

Myo-inositol for treatment of peripheral
neuropathy
Myo-inositol is an important constituent of the phospho-
lipids that make up nerve cell membranes. Because low
nerve myo-inositol concentrations have been observed in
the pathogenesis of diabetic neuropathy, the potential for
supplementation has been explored. Sural nerve biopsies

were conducted on 30 male subjects, 10 with type 1 dia-
betes (five with clinical signs of diabetic neuropathy), 10
with impaired glucose tolerance and 10 with normal
glucose tolerance. Nerve myo-inositol concentrations were
significantly lower in diabetics with neuropathy. Also, in
subjects with normal or impaired glucose tolerance, high
nerve myo-inositol concentrations were associated with
nerve regeneration as illustrated by increased nerve fibre
density [109]. In an animal model of experimental diabetic
neuropathy a significant decrease in motor nerve conduc-
tion velocity was observed. Supplementation with 500 mg
myo-inositol/rat/day partially prevented this decrease,
while supplementation with an analogue of myo-inositol,
D-myo-inositol-1,2,6-trisphosphate, at a dose of 24 mg/rat/
day completely prevented a reduction in nerve conduc-
tion velocity [110].

Thus, further studies are required to find whether treat-
ment with myo-inositol can treat symptoms associated
with alcoholic neuropathy as the disease pathology also
involves nerve fibre degeneration and loss.

The application of N-acetylcysteine for
peripheral neuropathy
N-acetylcysteine, an amino acid, is a potent antioxidant
and helps to enhance glutathione concentrations.
N-acetylcysteine may have application in the prevention
or treatment of neuropathy. Rats with experimentally-
induced diabetes for 2 months had a 20% reduction in
nerve conduction velocity and 48% reduction in endo-
neurial blood flow. Both were largely corrected by
N-acetylcysteine supplementation [111]. A mechanism of
cisplatin chemotherapy-induced peripheral neuropathy
was elucidated in an in vitro mouse model. Apoptosis of
neurones was induced by cisplatin, but pre-incubation
with N-acetylcysteine completely blocked apoptosis [112].

Thus, further preclinical and clinical studies are
required to assess of this molecule in alcoholic neuropathy.

Topical capsaicin cream for the treatment of
peripheral neuropathy
Capsaicin is an active principal of the herb Capsicum offici-
nalis and is believed to stimulate afferent C-fibres (fibres in
the mechano-heat class). The initial stimulation of C-fibres
results in burning and irritation that stimulates release of
substance P and other neuropeptides.Repeated exposures
result in a diminution of the initial burning and irritation
and a long-lasting analgesic effect [113]. In a large, multi-
centre, double-blind, placebo controlled trial conducted by
The Capsaicin Study Group,277 subjects entered the study,
252 continued for at least 2 weeks and 219 completed the
8 week trial. Subjects applied 0.075% capsaicin cream (n =
100 completers) or placebo cream (n = 119 completers)
four times daily and were evaluated at 2 week intervals for
8 weeks. Pain was assessed via physician assessment as
well as a patient driven visual analogue scale. Statistically
significant improvements were noted in physician global
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assessment (69.5% vs. 53.4%), pain intensity (38.1% vs.
27.4%) and degree of pain relief (58.4% vs. 45.3%) in the
capsaicin vs. placebo groups, respectively [114].

Therefore, topical application with capsaicin may
provide symptomatic relief from neuropathic pain in
patients suffering from alcoholic neuropathy.

Antidepressants for the alleviation of
neuropathic pain symptoms
Tricyclic antidepressants (TCAs) are often the first line
drugs to alleviate neuropathic pain symptoms. They have
central effects on pain transmission and block the active
re-uptake of norepinephrine and serotonin. TCAs have
been shown to relieve various neuropathic pain conditions
in many trials [115]. In agreement with this, one recent
study has confirmed the efficacy of TCAs in central pain
[116]. The serotonin/norepinephrine re-uptake inhibitors
(SNRIs), duloxetine and venlafaxine, have a well-
documented efficacy in painful polyneuropathy [117, 118].
SSRIs have been studied in a few trials which have demon-
strated a weak analgesic effect but the clinical relevance of
these compounds is questionable [119].

Thus, treatment with TCAs may provide symptomatic
relief in patients with alcoholic neuropathy.

Anticonvulsants
Antiepileptic drugs, such as the gamma aminobutyric acid
(GABA) analogue (gabapentin), have proven helpful in
some cases of neuropathic pain. These drugs have central
and peripheral anticholinergic effects, as well as sedative
effects, and they block the active re-uptake of norepineph-
rine and serotonin. Recently, extended release gabapentin
relieved symptoms of painful polyneuropathy [120]. Lam-
otrigine was effective in relieving central post stroke pain
[121] and painful diabetic polyneuropathy [122], but
recent larger studies have failed to show a pain relieving
effect in mixed neuropathic pain [123] and painful poly-
neuropathy [124]. Valproate demonstrated varying effects
in different studies of neuropathic pain, with three studies
from one group reporting high efficacy [125–127] and
others failing to find an effect [128,129].Lacosamide,a new
anticonvulsant drug, had a small but significant pain reliev-
ing effect on painful diabetic neuropathy [130], while sub-
sequent trials have failed to find an effect, except for the
efficacy of a 400 mg dose in subgroup analyses [131, 132].

Thus, treatment with anticonvulsant drugs may provide
another therapeutic alternative for the symptomatic relief
of pain in patients with alcoholic neuropathy.

Conclusion and future perspective

Alcoholic peripheral neuropathy presents with consider-
able morbidity and can result in significant decreases in
quality of life.While conventional medicine can offer some
relief, the potential side effects or addictive nature of many

of the medications render long term use undesirable. Such
treatments, furthermore, merely mask the symptoms and
do not address the underlying pathologies. Alternative
therapies, on the other hand, are typically without side
effects and address nutrient deficiencies, oxidative stress
and other aetiological factors associated with the develop-
ment of peripheral neuropathy.

Benfotiamine, alpha-lipoic acid, acetyl-L-carnitine and
methylcobalamin are among the well-researched alterna-
tive options for the treatment of peripheral neuropathy.
Other potential nutrient or botanical therapies include
vitamin E, myo-inositol, N-acetylcysteine and topical cap-
saicin. Thus there is a need to investigate all the above
mentioned agents in animal models of alcoholic neuropa-
thy as well clinically in patients suffering from this disorder.
The use of well-researched nutrients and the possible addi-
tion of new cutting-edge treatments should decrease the
morbidity associated with peripheral neuropathy and the
side effects associated with the commonly prescribed con-
ventional pain-relieving treatments in current favour.

As yet there is no effective therapeutic intervention
available for relieving the neuropathic pain due to chronic
alcohol consumption. Thus there is a need to understand
the basic pathophysiological mechanisms involved in
alcohol induced neuropathic pain so that new therapeutic
modalities targeting disrupted molecular events can be
developed for prevention as well as clinical management
of alcoholic neuropathy.
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